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Abstract. This paper proposes a parallel joint boosting method that si-
multaneously estimates poses and face landmarks. The proposed method
iteratively updates the poses and face landmarks through a cascade of
parallel random ferns in a forward stage-wise manner. At each stage,
the pose and face landmark estimates are updated: pose probabilities
are updated based on previous face landmark estimates and face land-
mark estimates are updated based on previous pose probabilities. Both
poses and face landmarks are simultaneously estimated through sharing
parallel random ferns for the pose and face landmark estimations. This
paper also proposes a triangular-indexed feature that references a pixel
as a linear weighted sum of three chosen landmarks. This provides ro-
bustness against variations in scale, transition, and rotation. Compared
with previous boosting methods, the proposed method reduces the face
landmark error by 7.1% and 12.3% in the LFW and MultiPIE datasets,
respectively, while it also achieves pose estimation accuracies of 78.6%
and 94.0% in these datasets.

1 Introduction

Computer vision applications such as face recognition [29, 3, 28], facial expression
recognition [8], age estimation [16, 17], and gaze estimation [24] are garnering sig-
nificant attention, and achieving high performance in these applications remains
difficult with variations in poses, expressions, and occlusions. In order to obtain
more robustness, localizing the fiducial face landmark points is considered to be
a key pre-processing step in many applications [29, 3, 28, 24]. However, accurate
face landmark estimation itself is a difficult problem. Among the obstacles to
obtaining accurate face landmarks, pose variations that involve 3D non-rigid de-
formation when projecting a 3D face on a 2D space is particularly difficult to
manage, but it must be overcome for accurate estimation [9].

Most previous face landmark estimation methods do not use the pose in-
formation and, when they do, the pose is estimated prior to the face landmark
estimation [9], which is referred to as the two-step method in this paper. The
intuition behind the two-step method is that the face landmark depends on the
pose, and a more precise location for the face landmark can be obtained using a
pose-conditional landmark estimator. We observed that the face landmark infor-
mation could also improve the accuracy of the pose estimate. In order to utilize
this, the poses and face landmarks should be estimated simultaneously.
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Fig. 1. Application results of parallel joint boosting to face landmarks and pose es-
timations in different stages. The pose probabilities and face landmark estimates are
gradually updated with increases in the number of stages.

In this paper, a parallel joint boosting method to simultaneously estimate
the pose and face landmarks is proposed. The proposed method has been mo-
tivated by gradient boosting [14] and LogitBoost [15], which have been used to
estimate face landmarks [4] and poses, respectively. The proposed method com-
bines gradient boosting and LogitBoost through a single weak regressor and then
iteratively updates both estimates in a forward stage-wise manner as illustrated
in Figure 1. In each stage, the face landmark estimates are updated based on the
pose probability that is estimated in the previous stage, while the pose proba-
bilities are updated based on the face landmarks obtained in the previous stage.
Each stage consists of a number of weak regressors, and each weak regressor that
assumes a particular pose is learned.

The remainder of this paper is organized as follows. Section 2 reviews selected
related work, and the details of the proposed method are described in Section 3.
The experimental and comparative results are reported in Section 4 and Section
5, respectively. The conclusions are presented in Section 6.

2 Related Work

Previous methods have attempted to manage large pose variations using appearance-
based models [7, 5, 21, 20], morphable-model [2, 3], and template matching [25,
30] using parametric shape constraints. Although various strategies and improve-
ments have been proposed over the past few decades, these methods have poor
generalizability against unseen samples and suffer from slow training speeds.
An alternative approach uses a part-based model [1, 23, 32] that considers the
landmark estimation problem as a part detection problem.

Regression based methods [4, 6, 27] have been actively proposed where shape
constraints are achieved in non-parametric manners, and they have exhibited
promising results for both of accuracy and computation time.

Cao et al. [4] proposed a cascade regression method that uses random ferns
as weak learners. The foundation of their method is representing the regressed
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shape as a linear combination of all training shapes. It was demonstrated that
the aggregation of random ferns results in a robust estimator with real-time
operation.

Dantone et al. proposed a pose-inspired method with conditional random
forests, where each conditional random forest is an expert regressor of each pose
[9]. Their algorithm works in two-steps: estimate the head pose using regression
forest and estimate the landmarks conditional to the head pose using conditional
regression forests. The limitation of the two-step approach is that misclassifica-
tion in poses cannot be managed well.

However, we found that poses and face landmarks should be estimated iter-
atively because they affect each other’s improvement in accuracy. Furthermore,
sharing parallel random ferns enables simultaneous estimation of poses and face
landmarks in one structure.

3 Joint Estimation of Poses & Face Landmarks

This section provides a brief overview of two boosting methods: gradient boosting
for face landmark estimation and LogitBoost for pose estimation. The proposed
method for joint estimation of poses and face landmarks is also described.

3.1 Boosting methods

Gradient boosting. Gradient boosting provides a foundation for a number of
face landmark estimation methods [4, 11]. Gradient boosting formulates the face
landmark estimation problem as an additive cascade regression as follows:

st = st−1 + rt(I;αt), (1)

where st is the face landmark estimate at the t-th stage, I is an input image,
and rt(·; ·) is a weak regressor at the t-th stage parameterized by αt. The final

estimate at stage T is given by sT = s0 +
∑T
t=1 r

t(I;αt).
Given training samples, {ŝi, Ii}Ni=1, and the regressor parameters, {αt}Tt=1,

are learned through minimizing the empirical loss, Ψ(·, ·), in a greedy forward
stage-wise manner, as follows:

αt = argmin
αt

1

N

N∑
i=1

Ψ (̂si, s
t
i), (2)

= argmin
αt

1

N

N∑
i=1

Ψ(ŝi, s
t−1
i + rt(Ii;α

t)). (3)

A reasonable choice of loss function, Ψ(·, ·), for the face landmark estimation is:

Ψ(ŝ, s) = ||ŝ− s||, (4)

which is typically considered to be a performance measure.
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In this paper, a random fern with L split functions, {fl}Ll=1, is considered
to be a weak regressor, and it partitions the feature space into 2L disjoint bins,

{Rb}2
L

b=1. Equation 3 is reduced to:

δs̄b = argmin
δs̄b

1

N

N∑
i=1

||δsi − rt(Ii; fl, δs̄b)||, (5)

=
1

1 + β/
∑N
i=1 1Rb

(f(Ii))

∑N
i=1 δsi1Rb

(f(Ii))∑N
i=1 1Rb

(f(Ii))
. (6)

Here, α = {{fl}Ll=1, {δs̄b}2
L

b=1} and {δs̄b}2
L

b=1 are bin outputs, 1R(·) is a binary
indicator function, δs = ||ŝ− s||, and β is a shrinkage parameter.

LogitBoost. LogitBoost [15] is a statistical boosting method for classification
and has been used for pose estimations [31]. Given J number of pose classes,
LogitBoost considers the following relationships between the pose probability,
πj , and the logistic function, Hj , as follows:

πj =
eHj∑J
i=1 e

Hi

, (7)

Hj = log πj −
1

J

J∑
i=1

log πi. (8)

Here, Hj has a cascade regression form similar to gradient boosting, which is
given below:

Ht
j = Ht−1

j + htj(I;β
t), (9)

which gives HT
j = H0

j +
∑T
t=1 h

t(I;βt) at the T -th stage. At each stage, Log-
itBoost fits an individual weak regressor, htj , for each pose using the weighted

least-squares of zj =
yj−πj

wj
to feature with the weights wj = πj(1 − πj). Here,

yj is a binary indicator that indicates the j-th pose.

The random fern is usually used as a weak regressor, and the solution to
the weighted least-squares regression problem using the random fern is given as
follows:

δh̄b,j = α

∑N
i=1 wi,jzi,j1Rb

(f(Ii))∑N
i=1 wi,j1Rb

(f(Ii))
. (10)

Here, {δh̄b,j}2
L,J
b,j=1 are bin outputs and α is a shrinkage parameter. The shrinkage

process based on β is omitted (refer to Equation 6)

For more details about LogitBoost, we suggest that readers refer to [15].
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Algorithm 1 Joint boosting evaluation

1: Input: Image I, weak regressors {f t, δs̄t, δh̄t}Tt=1

2: Initialize s0, H0
j

3: for t = 1 to T do
4: b← f t(I) . Compute bin index
5: st ← st−1 + δs̄tb
6: Ht

j ← Ht−1
j + δh̄t

b,j for ∀j
7: end for

8: πT
j ← e

HT
j∑J

j=1 e
HT

j
, for ∀j

9: Output: Face landmark estimates sT , pose probability πT
j

3.2 Parallel joint boosting

Assuming that poses and face landmarks are closely coupled, we conjecture that
the following procedures should be considered in order to improve both esti-
mates: (1) estimation of face landmarks should use the pose information and (2)
estimations of the poses should use face landmark information. Procedures (1)
and (2) should be conducted in an iterative manner, such that both estimates
are updated at each iteration. The proposed method includes both procedures.
The details of the proposed method are described in the following.

Joint boosting. In the joint boosting method, gradient boosting and Log-
itBoost are combined through a single set of random ferns. When one set of
random ferns to implement the gradient boosting and a separate set of random
ferns to implement LogitBoost share a common split function, then the gradient
boosting and LogitBoost can be combined using a single set of random ferns.
Gradient boosting and LogitBoost, which are based on random ferns, have been
proposed in the past for face landmark estimations [4] and pose estimations [31],
respectively. However, neither has been used simultaneously or jointly.

Algorithm 1 describes an evaluation procedure using the joint boosting. The
random fern of the joint boosting is parameterized by {f t, δs̄t, δh̄t}Tt=1, which are
the split functions, gradient boosting bin outputs, and LogitBoost bin outputs,
respectively. Gradient boosting for face landmark estimations and LogitBoost for
pose estimations share a common split function, f , and distinguish themselves
through separate bin outputs. Consequently, the poses and face landmarks can
be simultaneously estimated through carefully selecting the split function. Note
that the bin outputs, δs̄ and δh̄, can be obtained using Equations 6 and 10,
respectively.

We adopted landmark-indexed features1 [4, 13] and simple decision stumps
in order to design the split functions. Landmark-indexed features have been suc-
cessfully applied to both pose [13] and landmark [4] estimations. At each stage,

1 Landmark-indexed features are also known as shape-indexed features [4] and pose-
indexed features [13]. We use the term landmark-indexed feature for consistency in
this paper.
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Algorithm 2 Parallel joint boosting evaluation: soft

1: Input: Image I, weak regressors {f t|k, δs̄t|k, δh̄t|k}T,J
t,k=1

2: Initialize s0, H0
j

3: for t = 1 to T do
4: for k = 1 to J do
5: b← f t|k(I) . Compute bin index

6: δst|k ← δs̄
t|k
b

7: H
t|k
j ← Ht−1

k + δh̄
t|k
b,j , for ∀j

8: π
t|k
j ← e

H
t|k
j∑J

j=1 e
H

t|k
j

, for ∀j

9: end for
10: st ← st−1 +

∑J
k=1 π

t−1
k δst|k

11: πt
j ←

∑J
k=1 π

t−1
k π

t|k
j , for ∀j

12: Ht
j ← log πt

j − 1
J

∑J
j=1 log πj

t, for ∀j
13: end for

14: πT
j ← e

HT
j∑J

j=1 e
HT

j
, for ∀j

15: Output: Face landmark estimates sT , pose probability πT
j

the landmark-indexed features are extracted based on previous face landmark
estimates, and previous face landmark estimates are used for the pose estima-
tions. The details of the landmark-indexed features that we used are described
in Section 3.3.

Parallel expansion. The intuition behind the parallel joint boosting is to use
the pose probabilities in the previous stage to improve the accuracies of the
face landmark estimates. In the parallel joint boosting, each stage consists of
J number of parallel random ferns, and each random fern assumes a particular
pose and is pose-conditionally learned.

We model face landmarks, s, as a mixture of J pose-conditional landmarks,
{s|k}Jk=1, with the pose-probability weights, πk, as follows:

s =

J∑
k=1

πks|k. (11)

The parallel joint boosting consists of T×J weak regressors with the parameters,
{f t|k, δs̄t|k, δh̄t|k}T,Jt,k=1, and are formulated based on the mixture model.

The overall procedure of the parallel joint boosting is described in Algorithm
2, and the details of each stage of the parallel joint boosting are described here.

1. The face landmark estimates, st, are updated based on the previous face
landmark estimates, st−1, J number of pose-conditional face landmark up-
dates, δs̄t|k, and corresponding pose probabilities, πt−1

k , in the previous stage

using the equation: st = st−1 +
∑J
k=1 π

t−1
k δs̄t|k.
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Algorithm 3 Parallel joint boosting evaluation: hard

1: Input: Image I, weak regressors {f t|k, δs̄t|k, δh̄t|k}T,J
t,k=1

2: Initialize s0, H0
j

3: for t = 1 to T do
4: k ← argmaxk π

t−1
k

5: b← f t|k(I) . Compute bin index

6: st ← st−1 + πt−1
k δs̄

t|k
b

7: Ht
j ← Ht−1

j + δh̄
t|k
b,j , for ∀j

8: end for

9: πT
j ← e

HT
j∑J

j=1 e
HT

j
, for ∀j

10: Output: Face landmark estimates sT , pose probability πT
j

2. The pose probabilities are simultaneously updated using the equation: πtj =∑J
k=1 π

t−1
k π

t|k
j . Here, π

t|k
j is obtained using the relationship between the

pose probability and logistic function, H
t|k
j , given in Equation 7. H

t|k
j can

be computed using the equation, H
t|k
j = Ht−1

j + δh̄
t|k
b,j .

This method is called the “soft” decision method, and it is distinguished from
the “hard” decision method as follows.

The hard decision method is described in Algorithm 3. The computation
cost in the evaluation procedure of the soft decision method lineally increases
with J . The hard decision method updates the posse and face landmarks in a
greedy manner, while the soft decision method processes all random ferns even
when the associated probability is close to zero. Through choosing the most
probable pose and corresponding pose-conditional random fern at every stage,
the computational cost in the evaluation procedure is irrelevant to J .

The bin outputs for the face landmark estimations of the pose-conditional
weak regressor can be obtained through solving the minimization problem weighted
by the pose-probability estimates that were obtained in the previous stage, πt−1

j ,
and these are reduced to:

δs̄
t|k
b =

∑N
i=1 π

t−1
k δsti1Rt|k

b

(f t|k(Ii))∑N
i=1 π

t−1
k 1

R
t|k
b

(f t|k(Ii))
. (12)

Here, the shrinkage process based on β is omitted (refer to Equation 6).

The bin outputs for the pose estimations can be obtained through applying
Equation 10 to all parallel ferns.

δh̄
t|k
j = α

∑N
i=1 π

t−1
k wi,jzi,j1Rb

(f t|k(Ii))∑N
i=1 π

t−1
k wi,j1Rb

(f t|k(Ii))
. (13)
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Fig. 2. Triangular-indexed features reference a point with a linear combination of ran-
domly generated weight vectors that are constrained to

∑
i wi = 1. Any point in the

face region can be represented invariant to shape deformation and scaling.

3.3 Triangular-indexed features

Regression-based methods typically require a high number of iterations for ac-
curate landmark estimations; thus, for real-time operations, the update should
be based on features that require low computational costs, such as the pixel
intensity difference between two points as used in [11, 22]. In order to gain ge-
ometric invariance, local coordinates are used to index a pixel point through
determining its local coordinates references from the closest landmark [4]. This
feature is invariant to scale variations face transitions, and its efficacy has been
proven through achieving state-of-the-art performance in real-time operations
[4]. However, this feature is limited by the large pose variations in yaw and roll
axes that deform the pixel: single reference landmarks cannot counter pixel dis-
placements due to large pose variations. This feature requires regular similarity
transformations to the mean shape in the regression, which can hinder real-time
operations. In order to overcome this problem, Cao et al. [4] used a two-step
framework to obtain features that are robust to large pose variations.

In the proposed triangular-indexed feature, the pixel point is indexed as a
linear weighted sum of three landmarks what form a triangular mesh on the
face. The linear weighted sum of the arbitrarily chosen landmarks can represent
almost every point in the face and it is invariant to large pose estimations. The
triangular-indexed features do not require similarity transformations; hence, its
computation is cheap. Triangular mesh templates can be generated through se-
lecting three landmarks manually or randomly offline that will used throughout
the iteration. Then, a weight vector, w ∈ R3, is randomly sampled in the follow-
ing manner: sample w1 ∼ U(0, 1) where U(0, 1) is the uniform distribution; and
sample w2 ∼ U(0, 1) and w3 ∼ U(0, 1) such that E[w2] = E[w3] = 0; and then,
normalize the weights to make the sum to 1. This procedure can be interpreted
as randomly selecting a pixel point nearby landmark l1 in order to bind the
location inside the face region and to index the coordinates to three landmarks
including l2 and l3 to gain geometric invariance. Figure 2 depicts a triangular-
indexed feature compared with [4] shown in the images on the left. Finally, a
pixel point, p ∈ R2, is generated through estimating p =

∑
i wili. In contrast

to [4], we considered the pose probabilities, π|Jj=1, as weights and computed the
weighted correlation with δs. The computational complexity was reduced from
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Fig. 3. Distributions of the poses in the LFW and MultiPIE. LFW consists of mostly
frontal images, while MultiPIE consists of images in various poses.

O(P 2) to O(P ) through adopting the fast correlation computation introduced
in [4].

4 Experiments

The objectives of our experiments were two-fold: to compare the proposed method
with the state-of-the-art methods and to demonstrate the efficacy of the joint es-
timation of poses and face landmarks. We conducted experiments on two bench-
mark datasets: Labeled Faces in the Wild (LFW) [19] and MultiPIE [18]. Our
experiments focused on the evaluation of face landmark estimations because our
key interest is in face landmark estimations.

4.1 Datasets

LFW. LFW contains 13,233 face images of 5,749 people and is remarkably
challenging due to its constraint of the images of LFW being detected using the
Viola-Jones face detector [26]. There were no pose annotations for the original
LFW; therefore, we used the POSIT method [10] to obtain the approximate pose
annotations, and they were quantized into three poses: left-profile, frontal, and
right-profile.

MultiPIE. MultiPIE contains approximately 750,000 face images of 337 people
with varying viewpoints, illumination conditions, and facial expressions. We con-
sidered 250 people collected from Session 1 with varying poses from −45◦ to 45◦

with 15◦ intervals, under 19 illumination conditions and two facial expressions.

4.2 Implementation details

The benchmark methods [9, 27] often use the Viola Jones face detector to locate
the face position. However, the detection often fails on profiled faces in Multi-
PIE. Therefore, we simulated the output of the face detector through randomly
providing a bounding box that overlaps a minimum of 80% of the ground truth.
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Method Error Method Error

Dantone [9] 0.0696 Cao-Ti 0.0563
Human [9] 0.0597 Soft-Li 0.0584
Ever. [12] 0.0963 Soft-Ti 0.0552
Yang [27] 0.0645 Hard-Li 0.0589
Cao-Li[4] 0.0594 Hard-Ti 0.0552

Table 1. Average error for landmark estimation on LFW.

Because the code used in [4] was not distributed to publicly, we developed
and implemented it ourselves. The parameters of our implementation were set
to be the same as [4], except the number of initial shapes for training data aug-
mentation. We used 5 and 2 instead of 20 for the LFW and MultiPIE datasets,
respectively, in order to adjust the number of training samples. In more detail,
we set the number of stages to T = 10 and K = 500, the number of features to
P = 400, the depth of the random fern to F = 5, and the shrinkage parameter
to β = 1000.

In order to implement the parallel joint boosting, we adopted the two-stage
cascade method proposed in [4], and we set the parameters to be the same as
[4]. For the soft decision method, K was adaptively chosen as 166 and 71 for the
LFW and MultiPIE, respectively, in order to to adjust the number of processed
weak regressors in the evaluation. α was set to 0.005, and we manually designed
40 and 20 templates for the triangular-indexed features for LFW and MultiPIE,
respectively.

5 Results

For the face landmark estimations, we measured the estimation errors as a frac-
tion of inter-ocular distance, which is the distance between the ground truth
and estimation normalized using the inter-ocular distance. For the pose estima-
tions, the classification accuracies were reported. We performed five-fold cross
validations, and we report the mean accuracy in both datasets.

5.1 Comparison using LFW

We compared the proposed methods with the following methods: Dantone et al.
[9], human manual annotation [9], Everingham et al. [12], Yang and Patras [27],
and Cao et al. [4]. Furthermore, we employed the results reported in [9]. For [27],
we used the results of Figure 5 in [27], and [4] was implemented ourselves.

In order to evaluate the impact of the decision methods (soft or hard) and
the triangular-indexed feature, we conducted experiments on all possible com-
binations: Cao-Li [4], Cao-Ti, Soft-Li, Soft-Ti, Hard-Li, and Hard-Ti. Here, Li
and Ti indicate the landmark-indexed feature and triangular-indexed feature,
respectively.
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Fig. 4. Comparison between the bench-
mark methods and the proposed methods
for the LFW.

Fig. 5. Comparison with Cao et al. [4] and
the proposed methods for the LFW.

Fig. 6. Comparison with Cao et al. [4] and
the proposed methods for the MultiPIE.

Fig. 7. Average error for the pose estima-
tions (0◦, 15◦, 30◦, and 45◦) for the Multi-
PIE.

Table 1 and Figure 4 present the comparisons between the state-of-the-art
methods and proposed methods. The proposed methods achieved remarkable
performances and reduced the average error from the best current method [4]
by 7% with 78.6% pose estimation accuracy. Surprisingly, both [4] and the pro-
posed method outperformed the performance of human manual annotation per-
formance.

Table 1 and Figure 5 illustrate the detailed comparisons with Cao et al. [4]
and the proposed methods. The parallel joint boosting method was insignificant
on the LFW. This resulted from the LFW consisting of nearly frontal images
as illustrated in Figure 3. The triangular-indexed feature consistently improved
the performance compared with the landmark-indexed feature [4].
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Landmarks Cao-Li[4] Cao-Ti Soft-Li Soft-Ti Hard-Li Hard-Ti

Eyes 0.0547 0.0593 0.0515 0.0546 0.0526 0.0540
Nose 0.0859 0.0760 0.0794 0.0710 0.0787 0.0703

Mouth 0.0702 0.0647 0.0660 0.0605 0.0654 0.0594
Chin 0.0953 0.0922 0.0902 0.0880 0.0905 0.0855

Average 0.0715 0.0682 0.0671 0.0638 0.0670 0.0627
Table 2. Errors for each face landmark point and the average errors estimated on
MultiPIE.

Fig. 8. The confusion matrix of the pose estimations for MultiPIE using Hard-Ti (val-
ues ≤ 0.001 have been omitted).

5.2 Comparison using MultiPIE

The primary objective of the experiments using MultiPIE was to verify the effec-
tiveness of the joint estimation of the poses and face landmarks. We compared
the landmark estimation results of the previous gradient boosting method from
[4] and the proposed method.

The face landmark estimation results for MultiPIE are illustrated in Figure
6. The proposed hard and soft decision methods clearly outperformed Cao et
al. [4] for both using the landmark-indexed features and the triangular-indexed
features. Table 2 presents the errors for each face landmark point and the average
error. The Hard-Ti method achieved the best performance for the nose, mouth,
and chin, and it also achieved the minimum average error. The Hard-Ti method
reduced the average error by 12.3% compared with Cao-Li. When the feature
was fixed to a landmark-indexed feature, the soft and hard decision methods
reduced the average error by 6.2% and 6.3%, respectively. Using the triangular-
indexed features for the Cao, Soft, and Hard methods reduced the average error
by 4.6%, 4.9%, and 6.4%, respectively. The most difficult point to estimate was
the chin (0.0855 was the best result).

Figure 7 presents the average error for various poses. The Hard-Li and Hard-
Ti methods exhibited more smooth curves compared with the Cao-Li and Cao-Ti
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Fig. 9. Qualitative results for the LFW (top three rows) and MultiPIE (bottom three
rows) datasets.

methods, which could be interpreted as the hard decision method being more
robust to pose variations.

The confusion matrix of the pose estimations for the Hard-Ti method is de-
picted in Table 8. The average accuracy recorded was 94.6%. Although we did not
compare this performance with the other pose estimation methods because our
primary focus was on face landmark estimations, the proposed method achieved
reliable accuracy.

6 Conclusion

We proposed a parallel boosted regression method for simultaneous estimation
of poses and face landmarks. The proposed method enables the estimation of
both poses and face landmarks simultaneously, and the method improved both
estimations based on pose-conditional random ferns and triangular-indexed fea-
tures. Experiments using the LFW database demonstrated that the proposed



14 Donghoon Lee, Junyoung Chung, and Chang D. Yoo

method achieves high performance in face landmark estimation, even better than
the performance of human manual annotations. The results from the MultiPIE
database demonstrated that the proposed model improves the performance of
face landmark estimations in large pose variations and sufficiently supports our
intuitive idea. The pose estimation results have also demonstrated reliable ac-
curacy.
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[14-824-09-014, Basic Software Research in Human-level Lifelong Maching Learn-
ing (Machine Learning Center)].
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